Control charts

Published: November 21, 2015 Words: 1512

Why control charts are used in industry.

Control chart

Control charts, also known as Shewhart charts or process-behaviour charts, in statistical process control are tools used to determine whether or not a manufacturing or business process is in a state of statistical control.

Purpose

To determine whether a process should undergo a formal examination for quality-related problems

Overview

If analysis of the control chart indicates that the process is currently under control (i.e. is stable, with variation only coming from sources common to the process) then data from the process can be used to predict the future performance of the process. If the chart indicates that the process being monitored is not in control, analysis of the chart can help determine the sources of variation, which can then be eliminated to bring the process back into control. A control chart is a specific kind of run chart that allows significant change to be differentiated from the natural variability of the process.

The control chart can be seen as part of an objective and disciplined approach that enables correct decisions regarding control of the process, including whether or not to change process control parameters. Process parameters should never be adjusted for a process that is in control, as this will result in degraded process performance.

The control chart is one of the seven basic tools of quality control.

History

The control chart was invented by Walter A. Shewhart while working for Bell Labs in the 1920s. The company's engineers had been seeking to improve the reliability of their telephony transmission systems. Because amplifiers and other equipment had to be buried underground, there was a business need to reduce the frequency of failures and repairs. By 1920 they had already realized the importance of reducing variation in a manufacturing process. Moreover, they had realized that continual process-adjustment in reaction to non-conformance actually increased variation and degraded quality. Shewhart framed the problem in terms of Common- and special-causes of variation and, on May 16, 1924, wrote an internal memo introducing the control chart as a tool for distinguishing between the two. Dr. Shewhart's boss, George Edwards, recalled: "Dr. Shewhart prepared a little memorandum only about a page in length. About a third of that page was given over to a simple diagram which we would all recognize today as a schematic control chart. That diagram, and the short text which preceded and followed it, set forth all of the essential principles and considerations which are involved in what we know today as process quality control." [3] Shewhart stressed that bringing a production process into a state of statistical control, where there is only common-cause variation, and keeping it in control, is necessary to predict future output and to manage a process economically.

Dr. Shewhart created the basis for the control chart and the concept of a state of statistical control by carefully designed experiments. While Dr. Shewhart drew from pure mathematical statistical theories, he understood data from physical processes typically produce a "normal distribution curve" (a Gaussian distribution, also commonly referred to as a "bell curve"). He discovered that observed variation in manufacturing data did not always behave the same way as data in nature (Brownian motion of particles). Dr. Shewhart concluded that while every process displays variation, some processes display controlled variation that is natural to the process, while others display uncontrolled variation that is not present in the process causal system at all times.

Chart details

A control chart consists of:

* Points representing a statistic (e.g., a mean, range, proportion) of measurements of a quality characteristic in samples taken from the process at different times [the data]

* The mean of this statistic using all the samples is calculated (e.g., the mean of the means, mean of the ranges, mean of the proportions)

* A center line is drawn at the value of the mean of the statistic

* The standard error (e.g., standard deviation/sqrt(n) for the mean) of the statistic is also calculated using all the samples

* Upper and lower control limits (sometimes called "natural process limits") that indicate the threshold at which the process output is considered statistically 'unlikely' are drawn typically at 3 standard errors from the center line

The chart may have other optional features, including:

* Upper and lower warning limits, drawn as separate lines, typically two standard errors above and below the center line

* Division into zones, with the addition of rules governing frequencies of observations in each zone

* Annotation with events of interest, as determined by the Quality Engineer in charge of the process's quality

Chart usage

If the process is in control, all points will plot within the control limits. Any observations outside the limits, or systematic patterns within, suggest the introduction of a new (and likely unanticipated) source of variation, known as a special-cause variation. Since increased variation means increased quality costs, a control chart "signaling" the presence of a special-cause requires immediate investigation.

This makes the control limits very important decision aids. The control limits tell you about process behavior and have no intrinsic relationship to any specification targets or engineering tolerance. In practice, the process mean (and hence the center line) may not coincide with the specified value (or target) of the quality characteristic because the process' design simply can't deliver the process characteristic at the desired level.

Control charts limit specification limits or targets because of the tendency of those involved with the process (e.g., machine operators) to focus on performing to specification when in fact the least-cost course of action is to keep process variation as low as possible. Attempting to make a process whose natural center is not the same as the target perform to target specification increases process variability and increases costs significantly and is the cause of much inefficiency in operations. Process capability studies do examine the relationship between the natural process limits (the control limits) and specifications, however.

The purpose of control charts is to allow simple detection of events that are indicative of actual process change. This simple decision can be difficult where the process characteristic is continuously varying; the control chart provides statistically objective criteria of change. When change is detected and considered good its cause should be identified and possibly become the new way of working, where the change is bad then its cause should be identified and eliminated.

The purpose in adding warning limits or subdividing the control chart into zones is to provide early notification if something is amiss. Instead of immediately launching a process improvement effort to determine whether special causes are present, the Quality Engineer may temporarily increase the rate at which samples are taken from the process output until it's clear that the process is truly in control. Note that with three sigma limits, one expects to be signaled approximately once out of every 370 points on average, just due to common-causes.

Performance of control charts

When a point falls outside of the limits established for a given control chart, those responsible for the underlying process are expected to determine whether a special cause has occurred. If one has, then that cause should be eliminated if possible. It is known that even when a process is in control (that is, no special causes are present in the system), there is approximately a 0.27% probability of a point exceeding 3-sigma control limits. Since the control limits are evaluated each time a point is added to the chart, it readily follows that every control chart will eventually signal the possible presence of a special cause, even though one may not have actually occurred. For a Shewhart control chart using 3-sigma limits, this false alarm occurs on average once every 1/0.0027 or 370.4 observations. Therefore, the in-control average run length (or in-control ARL) of a Shewhart chart is 370.4.

Meanwhile, if a special cause does occur, it may not be of sufficient magnitude for the chart to produce an immediate alarm condition. If a special cause occurs, one can describe that cause by measuring the change in the mean and/or variance of the process in question. When those changes are quantified, it is possible to determine the out-of-control ARL for the chart.

It turns out that Shewhart charts are quite good at detecting large changes in the process mean or variance, as their out-of-control ARLs are fairly short in these cases. However, for smaller changes (such as a 1- or 2-sigma change in the mean), the Shewhart chart does not detect these changes efficiently. Other types of control charts have been developed, such as the EWMA chart and the CUSUM chart, which detect smaller changes more efficiently by making use of information from observations collected prior to the most recent data point.

Conclusion:-

Control charts are used in industries because these charts contains all analysis of the company for a particular time or for a year. It contains all the losses due to errors and their solutions. These charts help us to maintain the quality of the products.

References:-

1. http://en.wikipedia.org/wiki/Control_chart

2. Jurans quality handbook.

3. www.google.com